Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.
نویسندگان
چکیده
High free ammonia released during anaerobic digestion of livestock wastes is widely known to inhibit methanogenic microorganisms and result in low methane production. This was encountered during our earlier thermophilic semi-continuously fed continuously-stirred tank reactor (CSTR) treatment of piggery wastewater. This study explored chemical and biological means to mitigate ammonia inhibition on thermophilic anaerobic treatment of piggery wastewater with the aim to increase organic volatile carbon reduction and methane production. A series of thermophilic anaerobic batch experiments were conducted on the digested piggery effluent to investigate the effects of pH reduction (pH 8.3 to 7.5, 7.0 and 6.5) and additions of biomass (10% v/v and 19% v/v anaerobic digested piggery biomass and aerobic-anaerobic digested municipal biomass), natural zeolite (10, 15 and 20 g/L) and humic acid (1, 5 and 10 g/L) on methane production at 55 °C for 9-11 days. Reduction of the wastewater pH from its initial pH of 8.3 to 6.5 produced the greatest stimulation of methane production (3.4 fold) coupled with reductions in free ammonia (38 fold) and total volatile fatty acids (58% TVFA), particularly acetate and propionate. Addition of 10-20 g/L zeolite to piggery wastewater with and without pH reduction to 6.5 further enhanced total VFA reduction and methane production over their respective controls, with 20 g/L zeolite producing the highest enhancement effect despite the ammonia-nitrogen concentrations of the treated wastewaters remaining high. Without pH reduction, zeolite concentration up to 20 g/L was required to achieve comparable methane enhancement as the pH-reduced wastewater at pH 6.5. Although biomass (10% v/v piggery and municipal wastes) and low humic acid (1 and 5 g/L) additions enhanced total VFA reduction and methane production, they elevated the residual effluent total COD concentrations over the control wastewaters (pH-unadjusted and pH-reduced) unlike zeolite treatment. The outcomes from these batch experiments support the use of pH reduction to 6.5 and zeolite treatment (10-20 g/L) as effective strategies to mitigate ammonia inhibition of the thermophilic anaerobic treatment of piggery wastewater.
منابع مشابه
Thermal Pretreatment for Improvement of Biogas Production and Salinity Reduction by Zeolite
The anaerobic digestion of organic waste for biogas production can be affected by some variables such as temperature; concentration of the biogas feed solution, bacteria populations, and pressure. This study investigated the effects of thermal pretreatment at 50, 75, and 100 ºC on the biogas produced by simultaneous anaerobic digestion of cow manure, mushroom waste, and wheat straw at thermophi...
متن کاملFungal pretreatment of raw digested piggery wastewater enhancing the survival of algae as biofuel feedstock
BACKGROUND Understanding about the impact of white rot fungi on indigenous bacterial communities, NH4+ and turbidity in digested piggery wastewater, will allow the optimization of wastewater treatment methods and its use as a feasible medium for algal growth. Here, the white rot fungi were inoculated into undiluted and unsterilized digested piggery wastewater under different temperatures and pH...
متن کاملThe Zeolite-Anammox Treatment Process for Nitrogen Removal from Wastewater—A Review
Water quality in San Francisco Bay has been adversely affected by nitrogen loading from wastewater treatment plants (WWTPs) discharging around the periphery of the Bay. While there is documented use of zeolites and anammox bacteria in removing ammonia and possibly nitrate during wastewater treatment, there is little information available about the combined process. Though relatively large, zeol...
متن کاملThe impact of ammonia nitrogen concentration and zeolite addition on the specific methanogenic activity of granular and flocculent anaerobic sludges.
This work presents the effect of ammonia nitrogen concentration and zeolite addition on the specific methanogenic activity (SMA) of different anaerobic sludges with various physical structures (granular and flocculent), operating in batch conditions. Piggery, malting production and urban sludges derived from full-scale anaerobic reactors were tested in the experiment as the source of inoculum i...
متن کاملBiological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater.
Experiments in a lab-scale SBR were conducted to demonstrate the feasibility of using an internal carbon source (non-digested pig manure) for biological nitrogen and phosphorus removal in digested piggery wastewater. The internal C-source used for denitrification had similar effects to acetate. 99.8% of nitrogen and 97.8% of phosphate were removed in the SBR, from an initial content in the feed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 46 14 شماره
صفحات -
تاریخ انتشار 2012